48 resultados para Biosensor

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modification of glassy carbon electrodes with random dispersions of nanotubes is currently the most popular approach to the preparation of carbon nanotube modified electrodes. The performance of glassy carbon electrodes modified with a random dispersion of bamboo type carbon nanotubes was compared with single walled carbon nanotubes modified glassy carbon electrodes and bare glassy carbon electrodes. The electrochemical performance of all three types for electrode were compared by investigating the electrochemistry with solution species and the oxidation of guanine and adenine bases of surface adsorbed DNA. The presence of edge planes of graphene at regular intervals along the walls of the bamboo nanotubes resulted in superior electrochemical performance relative to SWNT modified electrodes from two aspects. Firstly, with solution species the peak separation of the oxidation and reduction waves were smaller indicating more rapid rates of electron transfer. Secondly, a greater number of electroactive sites along the walls of the bamboo-carbon nanotubes (BCNTs) resulted in larger current signals and a broader dynamic range for the oxidation of DNA bases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface based analytical tools have gained more importance for rapid, sensitive and label-free monitoring of molecular recognition events. Surface plasmon resonance (SPR) has played a prominent role in real time monitoring of surface binding events. SPR is increasing its significance especially for the study of ultrathin dielectric layer. This paper investigates the role of thin films of gold, silver and aluminium for protein detection in SPR biosensors. It is shown that the sensitivity, which is indicated by the shift of plasmon dip, is not linearly related to the thickness of protein but quadratic over a specific range. The approach involves a plot of a reflectivity curve as a function of the angle of incidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, 3-D finite element modeling and simulations are carried out to investigate the bending deformation of a single-walled carbon nanotube cantilever biosensor due to mass attached, and addition of a nano-scale particles to the beam tip resulting from the bioparticle detection. In addition, an algorithm for an electrostaticmechanical coupled system is developed. The computed results are in excellent agreement with the well known electrostatic equations that govern the deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we introduce a single-walled boron nitride nanotube (SWBNNT)-based cantilever biosensor, and investigate its bending deformation. The BNNT-based cantilever is modelled by accounting that the surface of the cantilever beam is coated with the antibody molecule. We have considered two main approaches for the mechanical deformation of the BNNT beam. The first one is differential surface stress produced by the binding of biomolecules onto its surface, and the second one is the charge released from the biomolecular interaction. In addition, other parameters including length of beam, variation of beam’s location and chiralities of the BNNT have been taken into consideration to design the cantilever biosensor. The computed results are in good agreement with the well known electrostatic equations that govern the deformation of the cantilever.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing demands of high-throughput, accurate and fast response biological or chemical sensors are driving the development of new detection technologies. This paper presents a micromechanical biosensor with capacitive read-out method. The proposed biosensor design consists of a fixed-fixed beam attached to an interdigitated capacitor. Implementation of the interdigitated capacitor design improves the sensitivity of the biosensor. The effects of the electrode thickness, length and the number of electrode fingers on the change of capacitance are investigated. The results show that the percentage change of capacitance is proportional to the number of the electrode fingers. Similarly, the increase in the length of the electrodes results in an increase in the percentage change of the capacitance. However, as the thickness of the electrode increases, the percentage change of the capacitance decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of interactions between organic biomolecules and semiconducting surfaces is an important consideration for the design and fabrication of field-effect-transistor (FET) biosensor. This paper demonstrates DNA detection by employing a double-gate field effect transistor (DGFET). In addition, an investigation of sensitivity and signal to noise ratio (SNR) is carried out for different values of analyte concentration, buffer ion concentration, pH, reaction constant, etc. Sensitivity, which is indicated by the change of drain current, increases non-linearly after a specific value (∼1nM) of analyte concentration and decreases non-linearly with buffer ion concentration. However, sensitivity is linearly related to the fluidic gate voltage. The drain current has a significant effect on the positive surface group (-NH2) compared to the negative counterpart (-OH). Furthermore, the sensor has the same response at a particular value of pH (5.76) irrespective of the density of surface group, although it decreases with pH value. The signal to noise ratio is improved with higher analyte concentrations and receptor densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the enhancement of sensitivity of variable incidence angle LSPR biosensor by monitoring biomolecular interactions of biotin-streptavidin with gold thin film. The investigation is carried out by means of introducing an additional layer of graphene sheet on top of gold layer (graphene biosensor) and using different coupling configuration of laser beam. The sensitivity, which is indicated by the shift of plasmon resonance angle, increases with graphene deposited onto the gold layers and is linearly related with the number of graphene layers. In addition, an investigation of the shift of plasmon dip is carried out for two different analyte interfaces: air and water. It is found that graphene biosensor has better sensitivity for triangular prism, higher prism angle, and water interface. The evaluation approach involves a plot of a reflectivity curve as a function of the angle of incidence while the operating wavelength is kept fixed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a multilayer localized surface plasmon resonance (LSPR) graphene biosensor that includes a layer of graphene sheet on top of the gold layer, and the use of different coupled configuration of a laser beam. The study also investigates the enhancement of the sensitivity and detection accuracy of the biosensor through monitoring biomolecular interactions of biotin-streptavidin with the graphene layer on the gold thin film. Additionally, the role of thin films of gold, silver, copper and aluminum in the performance of the biosensor is separately investigated for monitoring the binding of streptavidin to the biotin groups. The performance of the LSPR graphene biosensor is theoretically and numerically assessed in terms of sensitivity, adsorption efficiency, and detection accuracy under varying conditions, including the thickness of biomolecule layer, number of graphene layers and operating wavelength. Enhanced sensitivity and improved adsorption efficiency are obtained for the LSPR graphene biosensor in comparison with its conventional counterpart; however, detection accuracy under the same resonance condition is reduced by 5.2% with a single graphene sheet. This reduction in detection accuracy (signal to noise ratio) can be compensated for by introducing an additional layer of silica doped B2O3 (sdB2O3) placed under the graphene layer. The role of prism configuration, prism angle and the interface medium (air and water) is also analyzed and it is found that the LSPR graphene biosensor has better sensitivity with triangular prism, higher prism angle, lower operating wavelength and larger number of graphene layers. The approach involves a plot of a reflectivity curve as a function of the incidence angle. The outcomes of this investigation highlight the ideal functioning condition corresponding to the best design parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Localized surface plasmon resonance (LSPR) is a promising detection method for label-free sensing of biomolecules. In this paper, a multilayer design for a LSPR biosensor is presented. In the proposed design, a periodic array of dielectric grating is incorporated on top of a graphene layer in the biosensor. The aim is to improve sensitivity of the LSPR biosensor through monitoring biomolecular interactions of biotin-streptavidin. Sensitivity improvement is obtained for the proposed LSPR biosensor compared with conventional SPR counterparts. In addition, to optimize the design, we have investigated grating geometry including volume factor and grating depth. The outcome of this investigation identifies ideal functioning conditions corresponding to the best design parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, S-parameters investigation of a variable incidence angle multilayer SPR biosensor is presented. Both magnitude and phase of the S-parameters are taken into account in the investigation. The work presented in this paper is the first attempt to apply S-parameters analysis to a multilayer SPR biosensor. The goal is to improve sensitivity through involving S-parameters including their phase values. In addition, further investigation is carried out to understand the relationship between the S-parameters and thickness of biomolecular layer and also the design parameters including the number of graphene layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designed a multilayer SPR biosensor to improve the detection sensitivity and accuracy simultaneously. Developed a design procedure to identify optimum design parameters for SPR biosensing. Devised a new detection measurement technique based on S-parameters for SPR biosensing.